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ABSTRACT

Uncertainty quantification is an emergent field in engineering mechanics that makes use
of datisticd sampling, hypothess testing and input-output effect analyss to characterize
the effect that parametric and non-parametric uncertainty has on physica experiment or
numerical Smulation output. This publication overviews a project & Los Alamos Nationd
Laboratory that ams a developing a methodology for quantifying uncertainty and
assessing the totd predictability of structura dynamics smulations. The propageation of
parametric variability through numericad smulaionsis discussed. Uncertainty assessment is
aso a critical component of model validation, where the totd error between physica
observation and moded prediction must be characterized. The purpose of mode vaidation
IS to asess the extent to which a modd is an gppropriate representation of redity, given
the purpose intended for the numericad smulation and its domain of applicability. The
discusson is illugtrated with component-level and system:-level vaidation experiments that
feature the response of nonlinear models to impulse excitation sources. This publication is
unclassfied; it has been approved for unlimited, public rdease (number LA-UR-01-
3828).

1. INTRODUCTION

The availability of Tera-Ops computing where speeds of 10" multiplications per
second are exceeded; generd purpose finite eement modeling and andysis packages, and
advances in computer graphics promote the development of ever-increasngly complex
computer smulations [1]. Inthe fidld of structura dynamics, gpplications such as sructurd
hedth monitoring and damage assessment are evolving into sysem-levd andyss
techniques (as opposed to component-leve). For example, the vibration response of an
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entire bridge is dmulated without relying on mode condensation techniques that
gpproximate the geometry or reduce the number of degrees of freedom [2]. Similarly,
numerica smulations for heath monitoring are increesingly modding the sources of non
linearity that may contribute to the system’s response. An example is the transent
response of suspension and cable-sayed bridges that induces complex energy disspation
phenomena[3].

This evolution, however, leads to new problems. Firgt, conventiond festures such as
resonant frequencies and mode shapes become obsolete when the response of the system
exhibits nonlinear and non-stationary components. New strategies must be devised for
test-andyss corrdation, finite dement modd updating and parameter calibration.
Uncertainty quantification and propagetion of variability are additiona difficulties that the
conventiona forward and inverse problem solving technologies do generaly not address.
Consequently, most approaches available for structurad health monitoring are restricted to
systems where non-linearity and time dependency are “smal and regular” enough that
fird-order, linear approximations remain acceptable [4]. The frequency-doman
formulation and modd trandform of the equations of motion are typica examples of first-
order gpproximation.

1.1 Structural Health Monitoring Research at L os Alamos

To address these difficulties, severd research and development efforts have been
initiated a Los Alamos Nationd Laboratory (LANL). The four aspects that contribute to
the technology being developed can be categorized as.

(A) Sensing Capabilities; (B) Data Interrogation;
(C) Uncertainty Quantification; (D) Structural Prognosis.

The firgt aspect (instrumentation) focuses on the development of wireless, decentrdized
sensors that aso feature localized computing cagpabilities. This god is achievable given the
recent advances in the semi-conductor and MEMS technology. By deploying an array of
smdl, non-intrusive and inexpensive sensors and by letting them process the data locdly,
the amount of communication required between the various sensing stations is reduced
and decison making is greetly facilitated.

The second aspect investigated (data interrogation) involves the reduction of the vast
amounts of data collected and generated by continuous monitoring and numerica
smulation. Data condensation and feature extraction tools are developed in the generd
context of datistical pattern recognition. A particular emphasis is placed on developing
features that enable the andyss of nonlinear and non-dtationary responses. Another
criticd issue is data normdization, which conddts in ensuring that vibration changes
observed from one data set to another result from changes in the structura condition of
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the system as opposed to changes in loading, response levels and environmenta condition
[5].

The third aspect is the quantification of uncertainty and the vaidation of numerica
modes for complex engineering smulaions. Satigticd methods for the design of physicd
or computer experiments are invedtigated to identify which input parameters are
responsible for the response’ s variability and to study the interaction between inputs and
outputs. Once this is understood, surrogate models can be developed for efficient
numericad optimization, damage detection and prognoss. The tools developed for
uncertainty assessment can be gpplied to test data sets and numerica models that feature
arbitrary materiad non-linearity, contact mechanics and trangent excitation sources [6].

i Definition of Damage | Planning of
! & Failure Scenarios | |_ Physical Testlng
e
—»| Numerical I Sensing |
—p| Modeling L - _¢_ -
T v ,
) I physical Testing -
Data I nterrogation | & Data Collection
For Damage Detection —_— - L ..... -
¢ r=--=-=-="-=-=-=-=-- |

1 DataInterrogation |

Numericgl Simulations I For Damage Detection |
& Uncertainty Assessment - —— - { —_————

T 1
1 Estimation of "

I FutureLoading |

e o o —— =
; \
. U -

| _ _ Diagnosis
Adaptive Surrogate M odelmg, I U of current
LI Test-Analysis Correlation & ! State& History
______________ 4

-
-

I‘ """"" - | Prognosis

ngage Pr(_)gnoss ' 1 & of Remaining

LI (e.g. Prediction of Life, Confidence | Useful Life

_________________ D

FIGURE 1. Flow-chart of Integrated Structural Health Monitoring.
(Black, dashed-dotted: Planning and data acquisition. Red, solid: Large-scale
modeling and computing. Green, dashed: On-board integration.)
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The last step (structural prognoss) refers to the assessment of system performance
given its current structura condition and past history. A critical issuein structura prognoss
is the identification of future operating conditions and loading. Uncertainty quantification
and plays, again, a centrd role because uncertain future loads must be estimated and
propagated through the surrogate models within a given degree of confidence. Structurd
prognoss aso includes decison-making to help the andyss and users baance
performance and risk assessment.

Figure 1 illugtrates the methodology for structural health monitoring developed at Los
Alamos. It can be observed that the four aspects (A-D) contribute to many of the steps
outlined in Fgure 1. Although it is our opinion that the successful deployment of damage
detection technology a the system level will require al four aspects to be addressed, this
publication focuses on the uncertainty assessment (C) only. In the remainder, the forward
propagation of uncertainty is dscussed and illudtrated with the numerica asmulation of
Taylor materid tesing. Then, an example of sysem-leve uncertainty assessment is
provided with the numerical smulation of an impulse through a complicated threaded
assembly. This example illudtrates the andyss of input-output relaionship in the case of a
large-scde finite dement smulation. Findly, the publication is concluded with a discussion
of total uncertainty assessment.

2. FORWARD PROPAGATION OF UNCERTAINTY

The god of uncertainty quantification is to characterize the effect that parametric
vaiability and non-parametric uncertainty have on physica experiment or numericd
smulaion output. It is emphaszed that “uncertainty” is not necessarily redtricted to
parametric uncertainty, thet is, the imperfect knowledge of the control parameters of a
physica experiment or input parameters of a numericad mode. Uncertainty may aso take
the form of stochastic equations of motion, environmenta variability, measurement errors,
discretization and numerica errors, to name only afew.

Satigicad sciences provide many tools for the efficient sampling of probability
information, hypothes's testing and investigation of the interaction between inputs and
outputs. An example of international forum where the latest advances in these techniques
are discussed is the SAMO (Senstivity Andyss of Modd Output) conference [7].
Unfortunatdly, gpplication to engineering mechanics problems remains, to this date,
somewhét limited.

In the following, uncertainty in a quantity is described in terms of a Probability Density
Function (PDF) that specifies the probability of al possible values of that quantify. In this
context, probability is used as the quantitative measure of the degree of belief, which
summarizes the knowledge about a particular Stuation. Other mathematical frameworks
ae avaladle for quantifying and propageting uncertainty that may offer attractive
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dterndtives to the theory of probability, especidly in the event of extreme uncertainty.
Among them, we cite the Dempster- Shafer theory of possibility and belief [8], the theory
of fuzzy sats [9], information gap theory and convex modeds of uncertainty [10]. For
engineering applications, representing the uncertainty as probability information is
reasonable because large amounts of test data and well-established formad theories are
avalable.

The oldest and smplest method of uncertainty propageation is the Monte Carlo
technique. The underlying idea is to randomly pick values of a parameter such that the
histogram of chosen vaues approximates the PDF. Then, the computational modd is
andyzed a each point sampled in the input parameter space. Similarly, in the case of
tesing, a physica experiment is peformed for each combinatiion of sampled input
parameters. For each analysis or test performed, the output feature is recorded. Findly,
the digtribution of output values is characterized with its histogram, thet is, the frequency of
occurrence of each vadue. If alarge number of andyses are performed, the Centrd Limit
Theorem establishes that the histogram of output values converges to the unknown but
“true’ didribution, hence, offering a complete characterization of the output variability. The
main drawback of Monte Carlo sampling is that a large number of andyses is required,
generdly severd thousand. It is therefore not practica if the andyss performed
(experiment or smulation) is expensive or the input parameter space to explore is large.
Other drategies are available that may achieve the same result with a smaler number of
samples. Among them, we cite the Latin Hypercube sampling [11]; Taguchi sampling and
other orthogonal aray techniques [12]; and the Fourier Amplitude Sengtivity Test
(FAST), based on acyclic sampling strategy [13].

2.1 Example: The Taylor Impact Test

The Taylor impact test congsts of impacting a cylindricd sample of materid againg a
fixed, rigid surface. Taylor tests are often performed to investigate materia behavior at
high stress and high drain rates. Extremely high plastic strains develop at the crushed end
of the rod, resulting in severe loca deformation. The type of experimenta measurements
typicdly performed range from smply measuring the initid and find radii or lengths of the
deformed cylinder, to a full specification of its profile. To illugtrate the propagation of
uncertainty usng Monte Carlo sampling, a numericad smulaion of the Taylor test is
performed. The cylinder is made of a high-strength sted, 15 mm in diameter and 38-nm
long. The impact velocity is 350 meters-per-second. Because large plastic deformations
and gtrain rates in excess of 10™ second™ are expected, strain-rate dependent plasticity
must be included in the modd. The Johnson-Cook model for rate-dependent pladticity is
adopted:

S = (al +a,8, )(1 +a,l Og(ép )) @
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where e, and s denote the equivaent plastic strain and resulting stress, respectively. The
parametersa 1, a », a 3 and N are materid specific. The andysis of the cylinder’ simpact is
performed with HKS/Abagus, a generd-purpose finite-dement modding and andyss
package, which employs explicit time integration [14]. Figure 2 illustrates the response
obtained when the four materid parameters a1, a,, az and N are st to their nomind
vaues.

FIGURE 2. Smulation of the Taylor Test of a High-strength Steel.
(The response of an axisymmetric model is shown at times of 0 ns, 17 ng, 33 nsand
50 ns after impact, from left to right. The peak plastic strains for the three
deformed shapes are equal to 83%, 165% and 248%, respectively.)

The Monte Carlo technique is used to illudtrate the forward propagation of uncertainty
through the amulation code. We consder a hypothetical Stuation in which the only
parameters that are uncertain are those in the above stress-strain modd (1). It is further
assumed that the uncertainty distribution in each parameter p; isindependent and given by
a norma digribution, p; ~ N(b;;s;). As indicated above, the Monte Carlo process
consgs of sampling parameter vaues from the assumed uncertainty distributions and
running the dmulation code for each set of vaues. This procedure for uncertanty
propagation can therefore be viewed as nothing more than multiple runs of a deterministic
computer program.

In thisillugtration, a tota of 1,000 smulation runs are performed. Figure 3 shows the
hisograms of input parameters, thet is, the frequency with which each vaue is sampled. It
therefore represents the totd variability inputted to the system. The two output features of
interest are the ratios of find-to-initid cylinder lengths and radii, denoted by (L/L,) and
(R/R,), respectively. Figure 4 illugtrates the joint distribution of output features that results
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from input uncertainty. One noticesble observation is that the response parameters (L/L )
and (R/R,) are strongly correlated, as indicated by the non-circular distribution of points
in the output feature space.
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FIGURE 3. Histograms of Sampled Input Parameter Values.
(Upper left: Parameter a ;. Upper right: Parameter a ,. Lower left: Parameter N.
Lower right: Parameter a ;. Symbolsa;, a,, N and a 3 refer to equation (1).)
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FIGURE 4. Digribution of Output Features (L/L,) and (R/R,).
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(Horizontal axis: Ratios of final-to-initial lengths, (L/L,). Vertical axis. Ratios of
final-to-initial radii at the crushed end of the cylinder, (R/R,).)

Figure 5 shows the hisograms of the ratios (L/L,) and (R/R,) obtained from the
above joint digtribution. In the case of the output festure (R/R,), for example, the mean
vaue of this digtribution is equa to 2.06. Because the didtribution represents the output
uncertainty in (R/R,), the RMS devidion of the digtribution, s = 0.14, represents the
edimate of the standard deviation in the uncertainty of our prediction for (R/R,). It can
further be observed that the two histograms shown in Figure 5 do not appear to be
normally digtributed, which should come as no surprise because the numericd smulation

of this phenomenon is highly nonlineear.

0,565 0.75 02
L|'L [rnm.r’mm]

FEIFE [mm.frnm}

=]

Freguency (%)
L1;]

o

Y —
L= 4]

Freguency (%)
]

2.8

FIGURE 5. Histograms of Output Features(L/L,) and (R/Ry).
(Top: Distribution of ratios of final-to-initial lengths, (L/L,). Bottom: Distribution of
ratios of final-to-initial radii at the crushed end of the cylinder, (R/R,).)

For this example, the Monte Carlo caculationis handled using a scripting language that
dlows one to run a smulaion code (such as HKSAbagqus) with controlled input
parameters and to summarize the output. The scripting language used here is Python [15].
Ancther possibility would be to use acommercia code such as NESSUS, which has been
developed for reiability analyss of structura mechanics gpplications [16]. Other generd-
purpose agpplications are being developed for the propagation of uncertainty,
characterization of output probability information and inference concerning the parameter
vaues. One example is the DAKOTA toolkit under development & Sandia Nationa
Laboratories [17].
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3. INPUT-OUTPUT EFFECT ANALYSS

One important gpplication of uncertainty propagetion is the analyss of input-output
effects. Learning which combinations of input parameters are responsible for explaining
the variability of the output is critica to understand complex physical experiments or
numerica amulations. Effect andys's goes beyond conventiond sengtivity andyss (based
on differentia sengtivity or gpproximation methods such as finite differences) because it
assesses the sengtivity of the output over the entire range of applicability of the modd. In
contrast, loca approaches only provide information in the neighborhood of a particular
desgn point and a paticular direction. Mathematicaly, effect andyss addresses the
difficult problem of differentiating a function with respect to arandom variable,

To illugrate the concept of effect analys's, condder that the phenomenon investigated
(experiment or smulation) is replaced with a surrogate modd :

y=a,+ é ap; + é é Bijpipj ¥

i=1---N i=1:--N j=1---N,j3 i

Clearly, if al input parameters p; are normaized in [-1;+1], then the relative magnitude
between coefficients a; or 3; isindicative of the importance of the corresponding effect,
whether it is a linear effect @), a linear interaction @p;) or a quadratic effect ©).
Satidtica tests can be implemented to assess the globd contribution of each effect to the
total variability. Assume that the output varigbility can be explained by a particular input
parameter or interaction effect denoted by pu. The expected vaue of the output given py
is denoted by y = E[y]|pwm]. It can be shown that the total variance observed from the data
isequd to the variance of y and the expected vaue of the tota variance given py:

s*(y) = s* () + E[s*(y | pw)] ©)

Obvioudy, the lagt term in the right-hand side of equation (3) represents the influence of
parameter effect py on the total variability of the output y. If this effect has little influence,
then, the contribution E[s?(y|pm)] remains small. A popular Satistic that approximates
E[s(ylpm)] is the R square statistic (R?). It is defined as the ratio of variance that can be
attributed to a given effect to totd variance:

R &ly,-v= &l,-yF- & A&b"-y°f (4)

i=1Ngata j=1-Ngata I=1Nieye j=l---Ntha

The procedure for input-output effect andys's consdts of, first, designing a matrix of
physca or computer experiments. The mairix provides the combination of input
parameters p; at which the physical experiments or computer smulations are performed.
The previous section 2 provides an example of uncertainty propagetion in which the
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desgn matrix is defined by a Monte Carlo amulation. More efficient designs can be
obtained with fewer runs when the objective is input-output effect andysis. Reference [12]
describes, among others, the design of Taguchi orthogona arrays and reference [18]

addresses the design of experiments in conjunction with surrogate modding. After the
physicd experiments or numerical Smulations have been performed at the specified design
points, the R dtatistics can be caculated from eguation (4) for various linear or higher-
order effects. Effects associated with large R satistics explain the output variability more
than the others and they must be accounted for to best-fit surrogate models such as
equation (2). In the following, an example of effect andyssis presented that illudtrates the
characterization of atrangent structura response using a Taguchi array design.

3.1 Example: Large Scale Modeling of a Shock Response

Traditionaly, quantifying shock trangmisson through complex, jointed structures has
been posshble only with experimentd methods. These experiments are expensve and
time-consuming and thus only a few cases can be sudied. With the advent of large scae
computing capabilities, estimation of the shock transmisson with numerical models is
becoming atractable problem.

The test article congsts of severd components fabricated from a variety of materias
(titanium, 6061-T6 duminum, 7075-T4 duminum, SS-304 sainless sted and carbon
ded). Figure 6 illugtrates the individua components of the test article and a detall of the
finite eement mesh developed for smulating the response of the system to an explosive
load. The components are connected to the center titanium mount with threaded, bolted
and tapered tgpe joints. The purpose of the numericd smulation is to predict the
acceleration levels witnessed by the upper and lower mass smulators. A series of physica
experiments are also performed to measure the actud response of the system and assess
the predictive accuracy of the numericd modd. Making this prediction assumes that the
transmisson of the shock wave through the threeded assembly shown in Figure 6 is
captured with accuracy. What makes it difficult, however, is that the energy disspation
characteristics of materid interfaces are not known precisaly.

In the numerica smulation, this uncertainty is represented by tweve random preload
and friction coefficients. It is further assumed that four of the random input parameters
take two vaues while the other eight take three values. Therefore, the total number of
computer runs required to characterize fully the input space is 2* x 3% = 104,976.
Performing afull factorid andyssis currently impossible because a angle evduation of the
model requires four to six hours of CPU time using 504 processors of the Los Alamos 3
Tera-Ops supercomputer. To limit the required smulation time, a subset of 48 runs is
completed from parameter samples selected using the Taguchi orthogond array technique.
This particular design is adopted to eiminate diasng, which refer to the confounding of
linear effects (such as a;) with second order or higher effects (such as (3;). Because the
transmission of shock across the mount to the payload components is the primary event of
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interest, datisticd moments of the time history, shock response spectrum and power
spectra dengity at Six locations are used as features. Hence, a total of 36 features (2
moments x 3 outputs x 6 locations) are extracted for each one of the 48 runs. For each
feature, a linear datisticd mode is constructed by ignoring higher-order effects (3; in
equation (2). A summary of the R? analysisis presented in Figure 7.

1
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FIGURE 6. Components of the System and Detail of the Computational Mesh.
(Left: Lower shell, titanium mount, upper mass simulator, retaining nut and lower
shell. Right: Detail of the computational mesh showing the threaded interface
between the upper and lower shells, retaining nut and titanium mount.)
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FIGURE 7. Input Parameters M ost Responsible For the Output Variability.
(Composite R statistics for 36 features. The computer experiment is designed for
the screening of linear effects using an orthogonal Taguchi array with 48 runs.)
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Figure 7 illudtrates that the 36 features investigated exhibit globa sengtivity to the five
parameters p;, Ps, P, Pu and p. It demonsrates the Sgnificant reduction in
dimensondity tha can be achieved through parameter effect andysis This modd
vaidation experiment is further discussed in references [6] and [19)].

4. TOWARDSTHE ASSESSMENT OF TOTAL UNCERTAINTY

This publication overviews the issues of uncertainty assessment for structural dynamics
samulaions and gpplications such as sructurd hedth monitoring. The propagation of
parametric variability through numericad smulations is discussed. Parameter effect andysis
is introduced as a practicd method for identifying surrogate models and providing to the
andyds vauable indght regarding the input-output relationship in the case of complex
numericad modes.

The inverse propagation of uncertainty is not illustrated here but numerous examples of
parameter cdibration, finite dement mode updating and other inference problems can be
found in the literature. Inverse propagation of uncertainty refers to the inference of
probability information for the control parameters of a physca experiment or input
parameters of anumericd smulation, given observed uncertainty in the output. Among the
possble frameworks, Bayesan inference is a choice commonly encountered in many
disciplines of physcs and engineering sciences. An example of Bayesan inference in the
presence of uncertainty is provided in reference [20] that reports on the inference of a
mode of criticdity in anuclear physcs experiment.

Uncertainty assessment is dso a criticad component of mode vdidation. Modd
vaidation is formdly defined as the subgantiation that a modd within its domain of
applicability possesses a stisfactory range of accuracy congstent with the intended
gpplications of the model. A pre-requisite to model vaidation is therefore that the total
error between physica observation and mode prediction be characterized. The approach
generdly agreed upon condsts of bresking down the total error into individua
components and estimating the probability information of each one. Equation (5) illustrates
atota uncertainty model commonly adopted:

yMeasured = yPredicted te
Y eredicted ~ M (pl; YRR pN) (5)
e~N(07 STotal)

The totd error is defined as the difference between measured and predicted responses.
The numericd modd M is a black box that provides an output y given N input
parameters labeled p; through py. In addition, a probabilistic error model must be chosen.
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It condgts in equation (5) of an unbiased Gaussan probability dendty function with
unknown standard deviation Stota.

Characterizing the predictability of the numericd modd can be achieved by
decomposing the totd error into independent contributions. For example, if the error is
thought to be a Gaussian process that includes measurement error, parametric variahility
and discretization error, then the total variance can be decomposed into:

2 a2 ) 2 2 2
Staw =St QA S; +Sp 1Sy (6)
j=1--N

where sy denotes the standard deviation of measurement error, s; denotes the standard
deviation of parametric vaiability for the " parameter p; and sp represents the
discretization error. 1t may happen that the sources of uncertainty are not independent
from each other, in which case the right-hand side in equation (6) becomes an upper
bound. Variance decompostion is further complicated in the case of multivariate Satistics
because each variance term s in equation (6) then becomes a covariance matrix [S]. This
happens when several, possibly correlated, output features {yi;y>;...;yn} are considered
smultaneoldy.

In atypicad mode vaidation experiment, the totd variance Stqa IS Obtained from a
comparison of measured and predicted responses for a design of experiments that
attempts to explore the input space as much as possible. Components such as sy and sp
are estimated by investigating the measurement system and mesh convergence properties,
respectively. The variability s; of the output due to input uncertainty of the j™ parameter is
typicdly identified through an input-output effect analyss such as previoudy illudtrated in
section 3. In equation (6), the only term that remains unknown, S, represents the residual
sources of uncertainty. They include mode form error. Obtaining an estimation of mode
form error is criticd to assess the validity of the numericd modd over its domain of
gpplicability. Once available, the probability information N(0O;sgr) can be propagated to
future predictions to assess confidence bounds associated with a prediction of the model.
This may be the ultimate god of totd uncertainty assessment and modd vaidation.
Reference [21] develops a Bayesian framework for a smilar propagation of uncertainty
and reference [22] discusses an application of this methodology to the problem of radar
range tracking in multiple and diffuse target Stuations.
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